
MÁSTER EN DATA SCIENCE

Curso Académico 2022/2023

Trabajo Fin de Máster

AUTOMATIC IDENTIFICATION OF BOT
ACCOUNTS IN OPEN-SOURCE PROJECTS

Autor : Miguel Ángel Fernández Sánchez
Tutor : Dr. José Felipe Ortega Soto

Trabajo Fin de Máster

Automatic Identification of Bot Accounts in Open-Source Projects.

Autor : Miguel Ángel Fernández Sánchez
Tutor : Dr. José Felipe Ortega Soto

La defensa del presente Trabajo Fin de Máster se realizó el día 20 de abril
de 2023, siendo calificada por el siguiente tribunal:

Presidente:

Secretario:

Vocal:

y habiendo obtenido la siguiente calificación:

Calificación:

Móstoles, a 20 de abril de 2023

A mi familia y amigos,
gracias por vuestro apoyo.

To my family and friends,
thank you for your support.

Acknowledgements

I want to thank my classmates from this Master’s degree for their help and support during
all the courses and through this final phase, especially Edgli, Enrique, and David. The
COVID-19 pandemic arrived in our lives in the middle of our degree, so here goes a special
recognition for them and the Master’s professors for the extra aid and cooperation.

Tomy family and friends, who stood bymy side all this time, bearing withme after endless
promises of finishing this thesis once and for all. Your support kept me confident in the
most challenging times. Specially, I want to thank my friend Quan, who also helped me
solving technical issues and questions during the project.

To my tutor, Dr. Felipe Ortega, for accepting such a challenge and for the great help and
guidance he provided me during this process with a lot of patience, great pieces of advice,
andwise teachings. This encouragedme to keep improving and growing academically and
personally throughout this project and beyond.

Last but not least, to Bitergia for supporting me in the course of this Master’s degree; and
also to Professor Tom Mens, Professor Alexandre Decan, and PhD student Mr. Mehdi
Golzadeh from the University of Mons (Belgium); for guiding me during the early stages
of this project with their generous ideas and knowledge.

Acknowledgements

Summary

People participating in software projects (in particular, in Free, Open-Source projects) rely
on many tools and platforms to support their activity on many facets, such as code review
or bugmanagement. Within this scenario, automatic accounts (also known as bot accounts)
are commonly used in software development to automate and ease repetitive or particular
tasks.

Identifying these bot accounts and their activity in the projects is crucial for anyone will-
ing to measure many aspects of the software project and the community of contributors
behind it. GrimoireLab is a tool that provides metrics about the software development pro-
cess, including a component to manage the contributors’ identities, with an option to mark
individual profiles as bots. Nonetheless, this labelling process is entirely manual.

In this MSc thesis, a Python tool to detect bots automatically based on their profiles’ in-
formation and their activity in the project is developed. This tool can be integrated as a
component inside the GrimoireLab toolchain. To this aim, we analysed the code changes
from a set of software projects from the Wikimedia Foundation, produced between Jan-
uary 2008 and September 2021 using GrimoireLab, labelling manually the bot accounts
generating activity with the purpose of creating an input dataset to train a binary classifier
to detect whether a given profile is a bot or not.

After testing different classification models using the Scikit-learn module for Python, the
model that performed best was a “Random Forest” classifier, where the most relevant fea-
tures were a terms score calculated based on domain-related heuristics and statistical val-
ues obtained from the individuals’ activity, such as number of changes in source code or
number of words and files per code change submitted to the projects.

SUMMARY

Resumen

Las personas que participan en proyectos de software (y en paricular en proyectos de soft-
ware libre y código abierto), se apoyan en varias herramientas y plataformas para interac-
tuar y tratar con diferentes aspectos de estos proyectos, tales como la revisión de código o
la gestión de errores o bugs. En este contexto, las cuentas automáticas (también conocidas
como cuentas bot) se usan frecuentemente en el desarrollo de software para automatizar y
simplificar ciertas tareas repetitivas o específicas.

Para cualquier persona interesada en medir ciertos aspectos de un proyecto de software
y de la comunidad de personas que lo sustenta, es crucial identificar estas cuentas bot y
su actividad. GrimoireLab es una herramienta que proporciona métricas sobre el proceso
de desarrollo de software, que incluye un componente para la gestión de los perfiles de
contribuidores. Dicho componente cuenta con una opción para marcar aquellos perfiles
que pertenezcan a una cuenta bot. Sin embargo, este proceso de etiquetado es enteramente
manual.

En este Trabajo de Fin de Máster se propone una herramienta desarrollada en Python para
detectar automáticamente cuentas bot, integrable comoun componente dentro deGrimoire-
Lab, utilizando como base la información de los perfiles de los diferentes individuos y de
su actividad en el proyecto analizado. Para desarrollar esta herramienta se han analizado
con GrimoireLab los cambios en el código de un conjunto de proyectos de software de la
Fundación Wikimedia, producidos entre enero de 2008 y septiembre de 2021, etiquetando
manualmente aquellas cuentas bot activas en ese periodo; con el propósito de crear un con-
junto de datos (dataset) de entrada para entrenar un clasificador binario, que detecte si un
determinado perfil pertenece a una cuenta bot o no.

Tras probar diferentes modelos de clasificación usando el módulo Scikit-learn para Python,
el modelo que mejor resultados obtuvo fue un clasificador de tipo Random Forest. Entre sus
caraterísticas más relevantes destaca el empleo de una puntuación numérica calculada en
base a heurísticos de este dominio de aplicación junto con valores estadísticos obtenidos de
la actividad de los individuos, tales como el número de cambios o el numero de palabras
y ficheros de cada cambio producido en los proyectos analizados.

RESUMEN

Contents

List of Figures

List of Tables

List of Listings

1 Introduction 1
1.1 Identity problems . 1
1.2 Automatic accounts: bots . 2
1.3 How this project was born . 3
1.4 Project objectives . 4

1.4.1 General objective . 4
1.4.2 Specific objectives: Goals and Questions 4

1.5 Time planning . 5
1.6 Structure of the thesis . 5

2 State of the Art 7
2.1 Research . 7

2.1.1 A ground-truth dataset and classification model for detecting bots in
GitHub issue and PR comments . 8

2.1.2 Detecting and characterising bots that commit code 11
2.2 Technologies . 15

2.2.1 GQM approach . 15
2.2.2 GrimoireLab . 16
2.2.3 SortingHat . 16
2.2.4 Python . 17
2.2.5 Git . 19

3 Design and implementation 21
3.1 General architecture . 21
3.2 Creating the initial dataset in GrimoireLab 22

3.2.1 Selecting the community to analyse 22
3.2.2 Setting-up the GrimoireLab instance 24
3.2.3 Curating identities information . 25

CONTENTS

3.3 Data extraction . 26
3.3.1 Querying the data from ElasticSearch 26
3.3.2 Building the Contributors dataset . 28

3.4 Data processing . 30
3.4.1 Exploratory Data Analysis . 30
3.4.2 Building the training, test, and validation datasets 31
3.4.3 Generation and selection of features 31
3.4.4 Correlation . 33
3.4.5 Imbalanced data . 34

3.5 Classification model . 34
3.5.1 Models definition . 39
3.5.2 Evaluation metrics . 43

4 Experiments and validation 49
4.1 Data processing: Analysing text . 49
4.2 Choosing the classification model . 50

5 Conclusions 57
5.1 Goal achievements . 57
5.2 Knowledge application . 58
5.3 Lessons learned . 59
5.4 Future work . 59

5.4.1 Improving and extending the classifier 59
5.4.2 Integration with SortingHat . 60

A Definitions 63
A.1 Shifted logarithm . 63
A.2 Jaccard distance . 63
A.3 Levenshtein distance . 63
A.4 Combination of Jaccard and Levenshtein distances 64
A.5 Mahalanobis distance . 64
A.6 Terms score . 64

References 65

List of Figures

1.1 A project contributor can use many accounts across different tools and plat-
forms, besides having a number of organisational affiliations. 2

2.1 BIMANworkflow: Scores from eachmethod are used by an ensemblemodel
that classifies the given author as a bot or not a bot (taken from the original
paper). 14

2.2 Example: Goal, Question, Metric approach hierarchy. 16
2.3 How git structures its information internally [16]. 19

3.1 General architecture of the Revelio tool. 22
3.2 Process architecture. 23
3.3 Community Metrics wiki page from Wikimedia Foundation. 24
3.4 Dashboard showing the Git data obtained with GrimoireLab locally, after

curating identities information. 25
3.5 Graphic example of a Git log entry and some of the information we can ex-

tract from it. 27
3.6 Graphic example of how data extracted from ElasticSearch look like: one file

per author is produced, which contains a set of fields for all of its commits
submitted within the time period for the analysis. 29

3.7 Proportion of contributors marked as a bot (False, on the left; True on the
Right). 31

3.8 How the initial dataset was split (stratified) into Training, Test, and Valida-
tion sets, showing the percentage each of them represents out of the whole
set. 32

3.9 Correlation heat map of the initial variables from the training dataset. . . . 35
3.10 Correlation heat map showing the pairs of variables with an absolute corre-

lation greater than 0.75 . 36
3.11 Correlation heat map of the transformed variables from the training dataset. 37
3.12 Effect of applying SMOTE over the training dataset on the target variable;

before (left) and after (right). 38

4.1 Description of the classification process. Background colours for each box
explain which datasets (Training, Test and Validation) are involved in each
step. 51

LIST OF FIGURES

4.2 Visualising the Training dataset with t-SNE (Blue (0): Human, Red (1): Bot). 52
4.3 Visualising the Training datasetwith t-SNE after applying SMOTE (Blue (0):

Human, Red (1): Bot). 53
4.4 Precision-Recall Curve corresponding to the results with the test dataset. . 54
4.5 Precision-Recall Curve corresponding to the resultswith the validationdataset. 54
4.6 Feature importance for the Random Forest Classifier, displayed in descend-

ing order. 55

List of Tables

2.1 Evaluation of the classification model using the test set. 10
2.2 Predictors used in the random forest model for BICA. 13

3.1 Selected fields from the git index produced by GrimoireLab. 45
3.2 Transformation applied to quantitative variables. 46
3.3 Common terms used for the name, email, and/or username of automatic

accounts. 46
3.4 Levels of heuristic terms and their assigned weights used for computing a

term score. 47
3.5 Transformation of qualitative variables. 47
3.6 Example of confusion matrix to evaluate the classifiers’ performance. 47

4.1 Results of the different classifiers showing the most relevant scores. The
coloured row indicates themodelwith best overall results over the Test dataset. 56

4.2 Results of applying the chosen classifier to the Validation dataset. 56
4.3 Confusionmatrix of the resultswith the test dataset (Fβ = 0.811). The green-

coloured cells represent the cases where the predicted and the real value
match; the red-coloured ones represent the cases where the predicted values
did not match the real ones. 56

4.4 Confusion matrix of the results with the validation dataset (Fβ = 0.6). The
green-coloured cells represent the cases where the predicted and the real
value match; the red-coloured ones represent the cases where the predicted
values did not match the real ones. 56

LIST OF TABLES

List of Listings

3.1 Example of the JSON file per commit produced by GrimoireLab (only the
main fields are included). 28

5.2 Proposed class for SortingHat’s recommendation engine to include the re-
sults of the classification. 61

LIST OF LISTINGS

Chapter 1

Introduction

People contributing to software projects (in particular, FLOSS projects) rely on several tools
to support their activity onmany aspects of the project, such as source code changes, project
management and coordination, software bugs or issues [3]. Data generated by such in-
teractions can be used to extract valuable information that project managers and leaders
can use to make the right decisions for the future of the project (known as data-driven
decisions). Some of the most common questions while analysing an open-source project
are:

• How many contributors are participating?

• How many companies contribute to the project?

• How good are these participants at handling issues?

These data are also interesting for academic purposes, as researchers and practitionersmay
be interested in answering a set of questions about a given project [9].

1.1 Identity problems
From a project management perspective, a person (generally with a manager role) needs
to know their community or project. In order to get valuable insights, that person may ask
two main questions:

• How many unique contributors do the project have?

• How many different organisations are contributing to the project?

To answer these questions, wemust manage contributor identities within the project.

After spotting the usage of a plethora of different tools within FLOSS projects, it is impor-
tant to explain that, for interacting with each of these tools, each project contributor must
be identified in some way. This could be done by creating an account or setting up a set
of credentials, usually a combination of name and email. This means each contributor will

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: A project contributor can use many accounts across different tools and plat-
forms, besides having a number of organisational affiliations.

end up with one or more different “accounts” or “identities” for the services the project is
using.

In such a scenario, it could happen that some contributors usemultiple accounts or creden-
tials sets (from now on, we will refer to these as identities) for the same tool or service, for
instance, to differentiate the contributions made through an organisational account from
those made from a personal or academic account. We name an individual as the entity
representing the many identities of a contributor, its profile, and enrolment information.
This problem alone entails one of the hardest challenges: how to merge identities owned
by the same individual.

This is where SortingHat, a component that is part of the GrimoireLab toolset (see 2.2.2),
comes into play. This tool aims to ease the task of managing contributors’ identities within
a project or set of projects [14]. It will be described in detail in Section 2.2.3.

1.2 Automatic accounts: bots
It is essential to state that some interactionswhich occurwithin software development tools
are not directly created by humans. Instead, they stem from an automated process set with
a specific purpose and permission level to produce a specific output affecting the state of
the project and its members.

This type of interaction is very common in open-source projects [5], including top-level
projects and communities such as GitLab1, Wikimedia Foundation2 and OpenStack3.

1https://gitlab.com/gitlab-org/gitlab
2https://wikimediafoundation.org/our-work/wikimedia-projects/
3https://www.openstack.org/software/

https://gitlab.com/gitlab-org/gitlab
https://wikimediafoundation.org/our-work/wikimedia-projects/
https://www.openstack.org/software/

1.3. HOW THIS PROJECT WAS BORN 3

Some bots scan and re-post information, whereas others can also have a formal author-
ity role associated with task evaluation. They can even play a management role com-
bining evaluation and formal authority with interactive coordination, among other exam-
ples [10].

But, why is it important to identify bot accounts in open-source projects? A substantial rea-
son is that their presence challenges any researcher or stakeholder interested in analysing
the activity within a software project. Although these accounts are usually ignored in dif-
ferent studies, they may play an important role, as there are cases where they undertake
a significant percentage of the total activity (e.g., projects where bots are responsible for
accepting or rejecting 25% of all pull requests4) [8].

The number of bot accounts and their interactions depends on many factors, like:

• Type and purpose of the tool or service (issue management, messaging, bug tracker,
etc.).

• Whether this is an option provided by default by the tool or it is an ad-hoc feature.

• The way these automated accounts (bots) are configured: triggered by events, peri-
odic execution, etc.

• The amount of activity generated by humans or by other automatic accounts within
the project.

SortingHat provides a way to mark unique identities as “bot” accounts by editing the iden-
tity’s profile (configuring a Boolean field named is_bot). Currently, there is no automated
way to identify which individuals from the whole data set could be marked as “bots”,
yet.

Up to now, this has been an entirely manual process that consumes substantial time from
a person, who actively searches for suspicious identities of being bot accounts, looking
at some key values such as username, email, or contribution type. This person must also
double-check the original source of the data, looking for helpful extra information to verify
the operator’s guesses.

1.3 How this project was born
In this thesis, an approach to identify individuals from Automatic accounts (bots) is pro-
posed, using machine learning techniques to build a classifier based on contributions pro-
duced by all identities from a given set of projects. As an additional goal, this classifier will
be incorporated as a new feature in SortingHat, integrated with the original recommenda-
tion engine already implemented in it.

It is worth mentioning that this project was born within a strong research context. I had
already started with this project when Prof. Tom Mens, Head of the Software Engineering

4A request for integrating changes into a repository.

4 CHAPTER 1. INTRODUCTION

Lab from the Faculty of Sciences at University of Mons (Belgium), contacted our Bitergia
team to let us know about a research article regarding bot classification that they were
developing at that time (September 2020). As soon I became aware of this project, I reached
Prof. Tom Mens and his team to have a meeting to discuss the scope of their research
and the possibility of starting a collaboration between Bitergia (the company I work for,
at the time of writing this thesis) and the Software Engineering Lab from University of
Mons.

From Bitergia’s point of view, this was a long-desired topic to explore, as identifying bots
is a crucial part of the identity management process that our company offers to customers.
For the Software Engineering Lab researchers, it was helpful to promote their new tool for
bot classification BoDeGHa5 (previously BoDeGa) and their goal of having better ground-
truth datasets for research purposes.

1.4 Project objectives

1.4.1 General objective
The main objective of this project is to assess if it is possible to develop an automated or
semi-automated way to classify individuals from GrimoireLab’s SortingHat into human
users and bot accounts. This goal should be achieved through data obtained from each in-
dividual, using specific channels (data sources) to identify variables relevant to effectively
undertaking this classification.

1.4.2 Specific objectives: Goals and Questions
The specific goals for this project have been defined following the “Goal, Question, Metric”
approach. See Section 2.2.1 for more information.

Goal 1: Creating an automated process to discriminate between human users and bot ac-
counts, integrated with the GrimoireLab toolset.

• Q1.1. How can bot accounts be separated from human users?

• Q1.2. Is the profile information from a given individual enough to classify it as hu-
man or bot?

• Q1.3. Are there differences between activity generated by humans and bots?

• Q1.4. How can this classifier be integrated into GrimoireLab’s toolchain?

Goal 2: Finding which channels and footprints can be used to classify a user as human or
bot.

• Q2.1. Are there any particular channels and footprints, as a combination of interac-
tions, which can be used to classify a user as a human or bot?

5https://github.com/mehdigolzadeh/BoDeGHa

https://github.com/mehdigolzadeh/BoDeGHa

1.5. TIME PLANNING 5

• Q2.2. Can the message content (commit messages, issue texts, etc.) be used to vali-
date this classification?

– Q2.2.1. Does a richer syntax give any hint about the nature of a user?

– Q2.2.2. Can the entropy of a comment give a hint about the nature of a user?

• Q2.3. Do activity details (such as working hours or frequency of contributions) help
with this classification?

Goal 3: Obtaining a curated dataset from real open-source communitieswith real examples
of bot accounts.

• Q3.1. Which open-source communities should be analysed?

• Q3.2. Which data sources are we taking into account?

– Q3.2.1. Which data should we consider form these sources?

1.5 Time planning
Considering natural time, I spent, roughly, 1 year and 7 months working mostly during
weekends, as I conciliated it with my full-time job. Whilst the main conversations for start-
ing this project began in September 2020, the first stage started on March 2021. The time I
spent during the first stages of the project were quite uneven, but fromApril 2021 Iwas able
to keep a more regular pace until its completion on January 2023. This is the estimation of
when each task was carried out and how much time was spent on it:

• First design of the tool, data retrieval and curation: March 2021-September 2021.

• Designing the tool, additional work on data curation: September 2021-October 2021.

• Building the input dataset and first experiments: October 2021-January 2022.

• Second round of experiments: April 2022-July 2022.

• Third round of experiments and writing the thesis: July 2022-January 2023.

1.6 Structure of the thesis
This thesis is outlined as follows:

• In this Chapter 1, “Introduction”, the general context andmotivation is described for
the problemwe aim to solve. Also, the objectives for the project were already detailed
in subsection 1.4, “Project objectives”.

• Next, Chapter 2, “State of the Art”, provides information about previous research
work on this field and also a brief explanation of the technologies that were used
during the process.

6 CHAPTER 1. INTRODUCTION

• The design process and architecture of the tool are detailed in Chapter 3, “Design and
Implementation”, including a breakdown of its components and a detailed analysis
of the dataset obtained for the purpose of this project.

• In Chapter 4, “Experiments and validation”, the classifiers performance and results
are examined through different experiments, including the description of technical
challenges encountered and how they were addressed.

• Wrapping up, Chapter 5, “Conclusions” evaluates whether the set objectives were
met, and includes a discussion on the limitations of the tool, lessons learned and
future work.

• Furthermore, the Appendix A, “Definitions”, provides additional explanations for
several key terms.

There is a website dedicated to this final project6. It includes this thesis and complemen-
tary content such as the Notebooks for the exploratory data analysis and the classification
experiments. In addition, the source code for this tool is available in another dedicated
GitHub repository7.

6https://mafesan.github.io/Memoria-TFM
7https://github.com/mafesan/2021-tfm-code

https://mafesan.github.io/Memoria-TFM
https://github.com/mafesan/2021-tfm-code

Chapter 2

State of the Art

As mentioned in the Introduction chapter, this project was born within a strong research
context. When I contacted Prof. TomMens and his team about this Master’s thesis, we first
exchanged ideas regarding the scope of the project and how both initiatives could comple-
ment one another. Then, they shared with me the scientific paper they were developing,
aimed at detecting bots in issues and PR comments from GitHub.

A discussion followed about which research lines could be addressed for this Master’s the-
sis. The Software Engineering Lab from University of Mons did not implement the tool,
nor the underlying classifier, to detect bots based on Git commit comments or any other
Git-related information. As it would be relatively easy to extend their tool to also consider
Git commit comments, it was likely the classifier features that they used to distinguish bots
from humans in GitHub issue and pull request comments do not work that well on Git
comments. Studying, testing, and extending this behaviour was one of the main ideas they
proposed to me for this Master’s thesis. Likewise, this study could be extended to look at
other systems and data sources. Last, but not least, it was interesting for them to learn how
this classification was going to be integrated with identity merging (mainly talking about
GrimoireLab’s SortingHat component).

After reviewing the paper from the Software Engineering Lab at University of Mons, by
Mehdi Golzadeh et al., I discovered that this text pointed to other interesting articles about
the same topic, which are relevant to this Master’s thesis.

2.1 Research
In the following subsections, I summarise the two most relevant research articles on which
this project is supported, and the technologies used for this project.

• The first one is the article by Researcher Mehdi Golzadeh, Prof. Tom Mens et al.: “A
ground-truth dataset and classification model for detecting bots in GitHub issue
and PR comments” [8], on detecting bots in issue and pull request comments from
OSS projects.

7

8 CHAPTER 2. STATE OF THE ART

• The second one by Dey, B. Vacilescu et al.: “Detecting and characterising bots that
commit code” [4], on detecting bots contributing code in OSS1 projects.

2.1.1 A ground-truth dataset and classification model for detecting bots
in GitHub issue and PR comments

The main goal of this paper is to propose an automated classification model to detect bots
through comments submitted in GitHub issues and pull requests.

This article is divided into three large sections: First, they elaborate a ground-truth dataset
of pull request and issue comments from 5K GitHub accounts, from which 527 were iden-
tified as bots. Then, they propose a classification model that relies on comment-related
features to classify accounts as either bot or human. Eventually, they propose an open-
source tool based on the classification model to allow GitHub contributors to detect which
accounts in their repositories correspond to bots.

Creating the ground-truth dataset

As the objective of this study is to focus on software development repositories, they need a
way to identifywhich repositories fromGitHubwere created for suchpurpose. Hence, they
rely on libraries.io, a monitoring service indexing information for several million packages
distributed through several package registries, such as PyPI, npm, etc.

Their initial dump contains more than 3.3 million GitHub repositories, from which they
randomly select around 136K of them. From each of these repositories, they extract the
last 100 comments of the last 100 issues and pull requests during 4 days, in February 2020,
using GitHub’s API. They obtain over 10M comments from more than 837K contributors,
and from more than 3.5M issues and pull requests.

After considering the size of the initial dataset, they apply some constraints to reduce it.
First, they exclude users who made less than 10 comments. This threshold comes from
a previous study. Then, they extract a subset of 5K commenters, selected both randomly
andmanually, adding 438 commenters who had been identified as bots in previous studies
or contained a specific substring in their GitHub account name, such as “bot”, “ci”, “cla”,
“auto”, “logic”, “code”, “io” and “assist”.

Then, for the labelling process, they develop a web application where each commenter is
presented to at least two of the four authors of the paper. Comments belonging to a certain
user are displayed in batches of 20 comments (with the option of showingmore, if needed).
Then, the rater can select whether the commenter is a bot or a human being. All cases that
were agreed upon are included in the ground-truth dataset.

Creating the classification model

These are the selected features to create the classification model:
1Open-Source Software.

2.1. RESEARCH 9

1. Text distance between comments.

• The main hypothesis is that bot commenters post more repetitive comments
than humans do. This is why the metrics considered are text distance metrics,
that are commonly used in natural language processing (NLP): the Jaccard and
Levenshtein distances. The Jaccard distance A.2 aims to quantify the similarity
of two texts based on their content, while the Levenshtein distance A.3 intends
to capture the structural difference by counting single-character edits.

• After a tokenization process, for each commenter, they compute themean of the
Jaccard and Levenshtein distances between all pairs of comments. Results show
that humans get higher median values for both distances than bots. Nonethe-
less, there is overlapping between the values from both classes, indicating that
these mean distances are not enough to properly distinguish between the two
classes.

• Finally, a combination of both Jaccard and Levenshtein distances is used A.4.

2. Repetitive comment patterns.

• Observations suggest that bots tend to have sets of similar comments, while
most comments from humans are unique, except some of them that seem to fol-
low a pattern (mostly, short answers such as “Thank you!”, “+1” or “LGTM”2).

• To capture the comment patterns, they selectDBSCAN, a density-based cluster-
ing algorithm. To capture both structural and content distance between com-
ments, a combination of both Levenshtein and Jaccard distances is computed.
For each commenter, DBSCAN is applied to its set of comments.

• When the number of comment patterns (clusters) and the number of comments
considered per commenter is represented, there is a clearer separation between
humans and bots. The number of comment patterns for bots remained stable
and low, regardless of the number of comments.

3. Inequality between comments in patterns

• The inequality in the number of comments in each pattern is used as an ad-
ditional feature to distinguish between bots and humans by using the Gini co-
efficient (a value of 0 expresses perfect equality, while a value of 1 expresses
maximum inequality among values).

• Humans show a lower inequality than bots with respect to the spread of com-
ments within patterns, confirming that humans tend to have a lower inequality
than bots, a consequence ofmany of their patterns containing a single comment.

4. Number of comments and empty comments.

2LGTM: Shorthand for “Looks good tome”. “+1”, as a commonway to express agreementwith something
proposed in a previous comment or description.

10 CHAPTER 2. STATE OF THE ART

• This featuremakes it easier to distinguish between commenters having a similar
number of patterns (the ones having more comments per pattern, will more
likely be a bot).

• Regarding the number of empty comments, although the GitHub interface does
not allow empty comments in a discussion, it does not prevent comments com-
posed of whitespace characters. Data shows that these empty comments are
mostly created by human commenters.

For selecting the classifier, they rely on a standard grid-search 10-fold cross-validation pro-
cess to compare five families of classifiers (random forest, k-nearest neighbours, decision
trees, logistic regression, and support vector machines) over the training set (60% of the
ground-truth dataset) using Scikit-learn 2.2.4. In addition, the class “weight” parameter is
set to address the class imbalance problem for each supported classifier.

The 10 subsets are created using a stratified shuffle split, to preserve the same proportion
of bots and humans as in the complete training set.

The selected classifier is the “Random forest”: using the Gini split criterion, they get 10
estimators (trees) and a maximum depth of 10 for these trees. Results are available in
Table 2.1.

Classified as bot Classified as human P R F1

Bot TP: 192 FN: 19 0.94 0.91 0.92

Human FP: 13 TN: 1, 776 0.99 0.99 0.99

Weighted avg 0.98 0.98 0.98

Table 2.1: Evaluation of the classification model using the test set.

BoDeGHa: an open-source tool to detect bots in GitHub repositories

The tool accepts as inputs the name of a GitHub repository and a GitHub API key. The
output is computed in three steps:

1. Download all comments from that repository throughGitHub’sGraphQLAPI,which
is transformed into a list of commenters and their corresponding comments.

2. Compute the features for the classificationmodel: number of comments, empty com-
ments, comment pattern, and inequality between the number of comments within
patterns.

3. Apply the pre-trained model and outputs the prediction made by the model.

2.1. RESEARCH 11

Conclusions

From the 15 bots classified as humans, most cases correspond to bots that use, convert, copy
or translate text that humans initially produced. When looking at the 51 humans classified
as bots, most have unfilled issue templates, use repetitive comments such as “Thank you”
or “LGTM”, or post empty comments. About 85% of the misclassified humans and about
75% of misclassified bots are initially difficult to classify by at least one of the raters, as “I
don’t know”, “difficult”, or “very difficult”.

They also find several examples of commenters whose behaviour and comments corre-
spond to those of both humans and bots, that is, mixed commenters using their GitHub
accounts belonging to humans allowing automatic tools tomake use of the account for spe-
cific tasks. These cases represent the 1.5% (78 commenters out of 5, 082), and they exclude
them from the ground-truth dataset, as they can not decide whether these commenters
should be classified as bots or as humans. The mixed commenters are exposed to test how
the model behaved with these cases, resulting in 29 being classified as bots (37.2%) and 49

as humans (62.8%).

Although other articles, such as the one from Dey et al. (explained in the following sub-
section), proposed approaches for identifying bot accounts based on their commit mes-
sages or their author information, such as checking the presence of the string “bot” in the
account name or the committer name, it lead to numerous both false positives and false
negatives.

2.1.2 Detecting and characterising bots that commit code
The main goal of this article is to find an automated way of identifying bots (and their
contributions) that commit code in open-source projects and characterise them according
to their activity.

To do so, they propose a systematic approach named BIMAN (Bot Identification by commit
Message, commit Association and author Name) to detect bots considering different aspects of
the commits made by an author:

1. Commit Message: Identify if commit messages are being generated from templates.

2. Commit Association: Predict if an author is a bot using a random forest model, using
features related to the information from the commits as predictors.

3. Author Name: Match the author’s name and email to common bot patterns.

This method is applied to the World of Code dataset [11], obtaining a subset of the data,
gathering information about 461 bots detected by this approach and manually verifying as
bots, each with more than 1, 000 commits.

Their method to extract information about the authors consists of these steps: First, obtain-
ing a list of all authors from the World of Code dataset3. Second, identifying all commits

3The author’s IDs are represented by a combination of name and email address.

12 CHAPTER 2. STATE OF THE ART

from the authors. And third, extracting the list of files modified by a commit, the list of
projects the commit is associated with, and the commit content for each commit for every
author.

That being said, BIMAN (the proposed technique for detecting bots) comprises three
methods, which are detailed in the following subsections. This dataset is also used to
characterise the bots based on their patterns, such as the type of files modified and time
distribution, to analyse their work, and the programming languages they use.

Identifying bots by name (BIN)

After inspecting the dataset, regular expressions are used to identify if an author is a bot by
checking if the author’s name or the email contains the substring bot. These expressions
have restrictions, like searching for the string preceded and followed by non-alpha charac-
ters (to avoid false positives, such as names like “Abbot”) and excluding from this search
the email domain.

The initial assumption is that bots are very active and produce a significantly greater num-
ber of commits than humans. However, the observations show that the number of commits
between humans and bots is not quite different. Among the reasons behind this statement,
one is that given an author ID consisting of a name-email combination, slight variations in
this combination lead to consider some cases as different authors when they are not. Be-
sides, bots might have been implemented as an experiment or as part of a course and never
used afterwards. Another reason can be that some bots were designed for a project, but in
the end, they were never fully adopted.

Detecting bots by commit messages (BIM)

The primary assumption is considering that bots use template messages as the starting
point for the commitmessage. Thus, the goal is detecting if the commitmessage came from
a template. Although humans can also generate commit messages with similar patterns,
the hypothesis is that the variability of content within messages generated by bots is lower
than the messages coming from humans.

The BIM approach uses a document template score algorithm, which compares document
pairs and uses a similarity measure to group documents. A group represents documents
suspicious of conforming to a similar base document. Each group has a single template
document assigned to it, and this document is used for comparisons. A new group is
created when the similarity of a document does not reach the threshold with any other
template document for that group. After this, documents are compared, and a score is
calculated based on the ratio of the number of template documents and the number of
documents.

2.1. RESEARCH 13

Detecting bots by files changed and projects associated with commits (BICA)

Twenty metrics are used as a starting point, using the files changed by each commit, the
projects that the commit is associated with, and the timestamp and timezone of the com-
mits.

The random forest model performs better than other approaches for predicting whether an
author is a bot using the numerical features. Out of the 20 variables, only six features are
retained as predictors (see Table 2.2).

Variable name Variable description

Tot.FilesChanged Number of files changed by author across commits
Uniq.File.Exten Num. of unique file extensions in all the author’s

commits
Std.File.pCommit Std. dev. of number of files per commit
Avg.File.pCommit Mean number of files per commit
Tot.uniq.Projects Num. of unique projects associated with commits
Median.Project.pCommit Median num. of projects associated with commits

Table 2.2: Predictors used in the random forest model for BICA.

Ensemble model

The ensemble model is implemented as another random forest model and combine the
outputs of the three methods explained so far (BIN, BIM and BICA) as predictors to make
a final decision on whether an author is a bot or not.

Since the golden dataset is generated using the BIN method, the authors do not use it for
training the ensemble model. Instead, they create a new training dataset partly consisting
of 67 bots from which 57 author IDs are associated with eight bots and ten author IDs are
linked to three other known bots that are not in the golden dataset. Furthermore, 67 human
authors are included via random selection and manual validation.

The output from BIN is a binary value stating if the author ID matches the regular expres-
sions detailed before; the output from BIM is a score, with higher values corresponding to
a higher probability of the author being a bot; and the output from BICA is the probability
for an author of being a bot.

BIMAN results

BIMAN identifies 58 (87%) out of 67 author IDs as bots, and 6 out of 9 other IDs could be
identified as not actually being a bot via manual investigation, they are either spoofing the
name or simply using the same name.

14 CHAPTER 2. STATE OF THE ART

Figure 2.1: BIMAN workflow: Scores from each method are used by an ensemble model
that classifies the given author as a bot or not a bot (taken from the original paper).

BIN performance: during creation of the golden dataset, BIN obtains a precision close to
99%, which indicates that any author considered to be a bot using this method has a very
high probability of being a bot. In general, humans do not try to disguise themselves as
bots. The recall measure is not high, because BIN misses many cases where the bots do not
explicitly have the substring “bot” in their name.

BIM performance: the document template score algorithm solely relies on the commit
messages. The AUC-ROC value using the ratio values as predicted probabilities is 0.7.
Some details about the classification output:

• True Positive: The cases where this model can correctly identify bots are cases where
the bots actually use templates or repeat the same commit message.

• False Negative: The cases where this model cannot correctly identify bots are mostly
cases where the bots review code added by humans and create a commit message
that adds a few words with the commit message written by a human.

• True Negative: The human authors correctly identified have some variation in the
text, with the usual descriptions of change.

• False Positive: Humans who are misclassified as bots usually have short commit
messages that are not descriptive, and they reuse the same commit message multiple
times.

BICA performance: The golden dataset generated using the BINmethod is used for train-
ing the model and testing its performance. 70% of the data, randomly selected, is used
for training the model and the rest 30% is used for testing. This procedure is repeated 100

times with different random seeds. The model shows good performance, with an AUC-
ROC value of 0.89.

Ensemble model performance: The dataset used for training and testing the performance

2.2. TECHNOLOGIES 15

of this model has only 134 observations, because of reasons described in Section 2.1.2. 80%
of the data are used for training, and 20% for testing. The process is repeated 100 times
with different random seeds. The value of the AUC-ROCmeasure varies between 0.89 and
0.95, with a median of 0.90.

Conclusions

After studying the results, the authors conclude that a significant portion of authors can
be identified as bots using the proposed method.

Among the limitations for this approach, they mention the lack of a golden dataset and the
lack of a ground truth to validate this dataset against. Like in the previous article, another
threat is that a number of developers use automated scripts to handle some of their works,
which uses their Git credentials while making commits.

Moreover, they mention that BIM’s performance varies according to the language of the
commit messages (e.g., Spanish and Chinese), and it does not support multilingual sets of
commit messages.

They do not address the problem of multiple IDs belonging to the same author, so this is
planned as future work to extend the BIMAN method.

2.2 Technologies

2.2.1 GQM approach

The “Goal Question Metric” (GQM) approach [1] is based upon the assumption that for
measuring purposefully, first the goals must be specified for the project, then those goals
must be traced to the data that are intended to define these goals operationally, and finally
to provide a framework for interpreting the data with respect to the stated goals.

This approach helps to define the metrics that matter in each case, avoiding frequent bad
practices. For example, people tend to use or define a set of metrics without having a clear
idea about the specific goals they pursue. This usually leads to a “bottom-up” approach:
besides havingmetricsmisalignedwith the project or business goals, the set ofmetricsmay
also be biased by the current technology applied to obtain these metrics.

The lack of a well-defined strategy also hinders practitioners from understanding which
metrics are important andwhy. By using a “top-down” approach (first goals, thenmetrics),
it becomes easier tomaterialise a targeted set of questions for the current situation and then
check which metrics could be useful in the future or not, or how these metrics can help to
reach the different goals by answering the questions that were raised.

16 CHAPTER 2. STATE OF THE ART

Figure 2.2: Example: Goal, Question, Metric approach hierarchy.

2.2.2 GrimoireLab

GrimoireLab 4 is a free, open-source toolset for producing software development analyt-
ics.

This toolset provides a whole platform that supports automatic and incremental data gath-
ering frommany tools (data sources or backends) related to open-source development (source
code management, issue tracking systems, messaging tools, mailing lists, etc.).

Data obtained from these tools is stored in JSONdocuments following a uniform format, no
matter the source. These JSON documents are stored in ElasticSearch and, then, undergo
a data enrichment process which adds additional information such time calculations (de-
lays, duration), contributors’ affiliation, and more. Once the data have been augmented,
they can be consumed by visualisation tools and also directly using the ElasticSearch API.
GrimoireLab toolset comes with a tool named “Kibiter” which is a fork of Elastic’s Kibana.
A set of predefined dashboards and visualisations are included for each data source.

GrimoireLab is part of CHAOSS 5, a project sponsored by The Linux Foundation. It is
mainly developed by the Spanish company Bitergia, and represents an evolution of the
work done over more than 10 years in Bitergia and the LibreSoft research group at Rey
Juan Carlos University.

2.2.3 SortingHat

SortingHat is the GrimoireLab component for identitymanagement. It providesmore than
20 commands to manipulate identities, including support for:

i) identity merging based on email addresses, usernames, and full names found on
many tools used in software development;

4https://chaoss.github.io/grimoirelab/
5https://chaoss.community/about-chaoss/

https://chaoss.github.io/grimoirelab/
https://chaoss.community/about-chaoss/

2.2. TECHNOLOGIES 17

ii) enrolling members to organisations for a given time span, marking identities as au-
tomatic accounts (bots);

iii) gender assessment, among other features [14];

This tool maintains a relational database with identities and related information extracted
from different tools used in software development. An identity is a tuple composed of a
name, email, username, and the source’s name fromwhere itwas extracted. Tuples are con-
verted to unique identifiers (i.e., uuid), which provide a quick mean to compare identities
among each other. By default, SortingHat considers all identities as unique ones. Heuris-
tics take care to automatically merge identities based on perfect matches on (i) uuids, (ii)
name, (iii) email, or (iv) username.

In case of a positive match, an identity is randomly selected as the unique one, and the
other identities are linked to it.

Currently, SortingHat is evolving into a service-based application implementing aGraphQL
API in Python.

2.2.4 Python
Python 6 is an interpreted, object-oriented, high-level, open-source programming language
for general-purpose programming created by Guido van Rossum in 1991 [17]. Nowadays,
the most recent version is 3.11.2, from February 2023. Its design is focused on code read-
ability and clear syntax, making it possible to program using fewer lines of code compared
to other programming languages such as C++ or Ada.

Python features a large standard library, which includesmany tasks from text patternmatch-
ing to network scripting, in addition to a vast collection of third-party application libraries.
Other remarkable features are portability, as Python interpreters are available for many op-
erating systems; and the component integration, as Python scripts can easily communicate
with other parts of an application or code, like C++ libraries, MySQL databases, etc.

In this case, we focus on libraries oriented towards data science. Next, we describe several
important libraries utilised in this project.

NumPy and Pandas

NumPy 7 is an open-source project aiming to enable numerical computing with Python. It
was created in 2005, building on the earlywork of theNumeric andNumarray libraries.

NumPy has become the fundamental package for scientific computing in Python. It is a
Python library that provides amultidimensional array object, various derived objects (such
as masked arrays and matrices), and an assortment of routines for fast operations on ar-
rays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete

6https://www.python.org/
7https://numpy.org/

https://www.python.org/
https://numpy.org/

18 CHAPTER 2. STATE OF THE ART

Fourier transforms, basic linear algebra, basic statistical operations, random simulation and
much more.

Pandas 8 is an open-source data analysis and manipulation tool, built on top of the Python
programming language. This librarywas developed as an extension ofNumPy, and it offers
efficient data structures (such asDataframes) and operations to handle with numeric tables
and time series.

Matplotlib

Matplotlib 9 is a plotting library for the Python programming language and its numerical
mathematics extension NumPy. It provides an object-oriented API for embedding plots
into applications using general-purpose GUI toolkits.

Jupyter Notebooks

Jupyter Notebook10 (formerly IPython Notebooks) is a web-based interactive computa-
tional environment for creating notebook documents.

A Jupyter Notebook document is a browser-based interactive, simple programming envi-
ronment containing an ordered list of input/output cells which can contain code, text in
Markdown format, mathematics, plots and rich media. Underneath the interface, a note-
book is a JSON document, following a versioned schema, usually ending with the .ipynb
extension.

Jupyter notebooks are built upon a number of popular open-source libraries, such as IPython 11.

Imbalanced-learn

Imbalanced-learn12 (imported as Python module as imblearn) is an open-source, MIT-
licensed library relying on scikit-learn (imported as sklearn) and provides toolswhen deal-
ing with classification with imbalanced classes.

Scikit-learn

Scikit-learn13 is largelywritten in Python, andusesNumPy extensively for high-performance
linear algebra and array operations. Furthermore, some core algorithms are written in
Cython (a super-set of the Python language that additionally supports calling C functions)
to improve performance.

The classificationmodels proposed and tested for this project are based on this library.
8https://pandas.pydata.org/
9https://matplotlib.org/

10https://jupyter-notebook.readthedocs.io/en/stable/
11https://ipython.readthedocs.io/en/stable/
12https://imbalanced-learn.org/stable/index.html
13https://scikit-learn.org

https://pandas.pydata.org/
https://matplotlib.org/
https://jupyter-notebook.readthedocs.io/en/stable/
https://ipython.readthedocs.io/en/stable/
https://imbalanced-learn.org/stable/index.html
https://scikit-learn.org

2.2. TECHNOLOGIES 19

Figure 2.3: How git structures its information internally [16].

XGBoost

XGBoost14 (from eXtreme Gradient Boosting) is an open-source, optimised distributed gra-
dient boosting library designed to be highly efficient, flexible, and portable. It implements
machine learning algorithms under the Gradient Boosting framework. XGBoost provides a
parallel tree boosting (also known as GBDT, GBM) that solves many data science problems
in a fast and accurate way.

2.2.5 Git
Git is an open-source Version Control System (VCS), originally developed in 2005 by Linus
Torvalds [15]. Like any other VCS, git is a system that records changes to a file or set of
files over time so that you can recall specific versions later. According to the last surveys,
it is by far the most used VCS in the world15.

Git thinks of its data more like a series of snapshots of a miniature file system (See Fig-
ure 2.3). Every time you commit or save the state of your project, it basically takes a picture
of what all your files look like at that moment and stores a reference to that snapshot. To be
efficient, if files have not changed, git does not store the file again, just a link to the previous
identical file it has already stored. All this information is stored in a key-value system as
git objects, with a unique identity for each of them.

14https://github.com/dmlc/xgboost
15https://insights.stackoverflow.com/survey/2021

https://github.com/dmlc/xgboost
https://insights.stackoverflow.com/survey/2021

20 CHAPTER 2. STATE OF THE ART

Chapter 3

Design and implementation

The proposed tool for this project, Revelio, aims to provide a report with the results of
an automatic classification to discriminate bot accounts from the rest, over the available
information from individuals in a given GrimoireLab instance.

3.1 General architecture
Revelio is a tool which has been designed to be composed by different modules (see Fig-
ure 3.1), to ease its adaptability to future updates and extensions. Each of these modules
consist on one or more scripts.

As a general description, the tool requires a running GrimoireLab instance to execute. This
GrimoireLab instance would contain data from many endpoints stored in an ElasticSearch
instance, together with a relational database containing identity information.

With the GrimoireLab instance in place, Revelio accepts three main input parameters:

• The URL or the IP address of the ElasticSearch instance.

• The credentials to access ElasticSearch and SortingHat.

• The index name from ElasticSearch, containing the GrimoireLab-formatted data.

With these input parameters, the tool executes the following steps:

1. Data extraction: Revelio extracts the data per individual from the selected index
querying the ElasticSearch instance.

2. Data processing: The extracted data is analysed and processed, creating the datasets
for the classification phase.

3. Classification: In this phase, the classification models are defined and adjusted. The
output of this chain is a report containing the results of the classification: An at-
tribute is_bot for each individual, and another attribute for the accuracy of the re-
sult, accuracy.

21

22 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.1: General architecture of the Revelio tool.

In the following sections, the structure and the implementation of the tool are explained.
Eachmain phase from the general structure ismore detailed in the diagram fromFigure 3.2:
keeping the colour code from Figure 3.1, this diagram shows the sub-modules from each
main part of the tool and the execution flow detailed in the sections and subsections be-
low.

3.2 Creating the initial dataset in GrimoireLab

3.2.1 Selecting the community to analyse
In order to create and test the classification models for this project, an initial dataset was
needed. After some research, I chose the Wikimedia Foundation community as the target
to analyse, as it is a well-known community with a lot of active projects; many of them
using automation tools.

Wikimedia Foundation has the “Wikimedia Tech community metrics dashboard”1, which
is a running GrimoireLab instance dedicated to get activity metrics from the Wikimedia
Tech community. In their public documentation2 (see Figure 3.3) it is linked to the list of
repositories they are tracking for their community metrics dashboard.

Looking closer at the type of projects that were tracked, many research projects were ob-
served. Then, I decided to set up a local GrimoireLab instance with a subset of the projects.
As the main goal of this project is to detect automated accounts out of human accounts, I

1https://wikimedia.biterg.io/
2https://www.mediawiki.org/wiki/Community_metrics

https://wikimedia.biterg.io/
https://www.mediawiki.org/wiki/Community_metrics

3.2. CREATING THE INITIAL DATASET IN GRIMOIRELAB 23

Figure 3.2: Process architecture.

24 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.3: Community Metrics wiki page from Wikimedia Foundation.

decided to apply a first filter to exclude most of Wikimedia’s research projects. Research
projects usually don’t have the desired scale nor the level of activity required for the clas-
sification stage. Also, the results could not be as much generalised to other projects and
communities.

As for the selected data sources to analyse, this project is focused on the data obtained
from Git. Some of the selected repositories were stored on GitHub, others were stored in a
Wikimedia-managed Gerrit instance.

3.2.2 Setting-up the GrimoireLab instance

With this information, I deployed a local instance of GrimoireLab (Figure 3.4) by using
a Docker-compose file available on GrimoireLab repository, configuring the sources file,
with the selected subset of repositories to analyse; and the setup configuration file, includ-
ing:

• The name of the instance.

• The set-up parameters for the identities’ management tool, SortingHat.

• The name of the ElasticSearch indexes and additional pre-computed studies over the
data provided by GrimoireLab.

Once the platform is running, GrimoireLab instance performs many operations:

1. First, it downloads the raw data from the selected data sources. For this case, to get
the data from Git, the repositories from the sources file are downloaded and the Git
log file is parsed. This information is stored in JSON documents, one document per
“Commit”.

3.2. CREATING THE INITIAL DATASET IN GRIMOIRELAB 25

Figure 3.4: Dashboard showing the Git data obtained with GrimoireLab locally, after cu-
rating identities information.

2. Then, these documents are processed by another tool that adds additional informa-
tion such as the number of files modified or the number of total lines added and
removed on each commit, or pre-computed fields like time differences. This process
is called data enrichment.

3. Besides, identities-related information is aggregated to this extended set of the data
(enriched data). That is, each commit is authored by an individual, represented
in the identities’ database by a unique identifier, an associated profile, and a list of
identities belonging to this individual (different email addresses, different GitHub
accounts, etc.).

3.2.3 Curating identities information
The next step is to curate the identities’ information. The GrimoireLab tool managing this
process, SortingHat, offers mechanisms to automatically improve some key data.

Regarding account-merging, SortingHat providesmanypossibilities tomerge profiles based
on different fields from individuals (email, name and username) both individually or
jointly. As we are not assuming any information, the safest approach was to merge profiles
by their email. That is, if there are two or more individuals using the same email account,
they are merged into the same profile.

Then, it comes the affiliation information. SortingHat features a way to automatically enrol
individuals in an organisation based on the email domain from the profile. This is done by
using an organisation-domain map (e.g.: Domain wikimedia.org is linked to the organi-
sation “Wikimedia Foundation”).

Having said this, SortingHat does not have any automatedway to detect which individuals

26 CHAPTER 3. DESIGN AND IMPLEMENTATION

are automatics accounts (bots), and this is where Revelio tool comes to play.

Two approaches are followed to identify which individuals were bots. The first step con-
sisted of taking all the accounts which were already identified as “bots” by the Wikimedia
tech community itself in a dedicated Affiliations dashboard3, filtering in bot individuals
(author_bot:true) from the git index.

Second, the rest of the individuals are manually reviewed to identify potential bots and
then confirm they were looking at their activity. A total of 41 bot individuals were iden-
tified, out of 16, 284. With this information, a SortingHat-supported file is composed with
information about each bot individual, for replication purposes.

3.3 Data extraction
Before data are extracted from ElasticSearch, it is important to understand how Grimoire-
Lab platform is modelling such data. In this case, we are focusing on Git data.

GrimoireLab downloads each Git repository and parses the Git log (see Figure 3.5), storing
the entire commits history. From this record per repository, GrimoireLab composes a JSON
document per commit, with a set of fields reflecting the information associatedwith it, such
as the unique identifier (hash), the number of modified lines, the number of modified files,
the commit message, and more (see Listing 3.1). Later, there is another internal process
where these data are augmentedwith extra fields, such as the identity informationmatched
with data from the identity management system, together with some pre-processed fields
that allow aggregating them in a simpler way in Kibana, the visualisation layer from the
Elastic stack.

In summary, the git index stores one document per commit, with a set of fields whose
meaning is described in the corresponding data schema4.

3.3.1 Querying the data from ElasticSearch

A set of metrics were defined following the GQM approach 5 [1]. The next step is selecting
the proper fields from the ElasticSearch index that will allow obtaining such metrics, listed
in Table 3.1.

ElasticSearch is a search engine that behaves similarly to a NoSQL database. As the stored
entities are single documents, the data need to be aggregated in some way. ElasticSearch
has two basic types of aggregations: metrics and buckets. As their documentation ex-
plains:

3https://wikimedia.biterg.io/app/kibana#/dashboard/Affiliations
4https://github.com/chaoss/grimoirelab-elk/blob/master/schema/git.csv
5These metrics can be found as additional content on the website of the project, in the “Exploratory Data

Analysis” Notebook.

https://wikimedia.biterg.io/app/kibana#/dashboard/Affiliations
https://github.com/chaoss/grimoirelab-elk/blob/master/schema/git.csv

3.3. DATA EXTRACTION 27

Figure 3.5: Graphic example of a Git log entry and some of the information we can extract
from it.

• The metrics aggregation6 computes metrics (such as the average, median, unique
counts, etc.) based on values extracted in one way or another from aggregated doc-
uments. These values are typically extracted from documents fields.

• The buckets aggregation7 consists on creating sets of documents (called buckets)
taking a given criterion (depending on the aggregation type)whichdetermineswhether
a document in the current context “falls” into it.

The piece of code in charge of retrieving these data is the script ES-extract-datasets.py.

A first process executes a bucket aggregation using the unique identifier for the contributor
identities, author_uuid. This first query produces a list of contributors sending commits
during a given period of time. Then, a second process executes a query for each author
to retrieve the history of commits, asking for the fields that were defined in Table 3.1. Al-
though results are paginated, this process is split by monthly date ranges from the main
time period considered for the study, in this case from January 1st, 2008 to September 15th,
2021.

The output is a set of JSON files, one for each unique contributor, containing the targeted
variables for all commits 3.6.

6https://www.elastic.co/guide/en/elasticsearch/reference/6.8/search-aggregations-metrics.
html

7https://www.elastic.co/guide/en/elasticsearch/reference/6.8/search-aggregations-bucket.
html

https://www.elastic.co/guide/en/elasticsearch/reference/6.8/search-aggregations-metrics.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.8/search-aggregations-metrics.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.8/search-aggregations-bucket.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.8/search-aggregations-bucket.html

28 CHAPTER 3. DESIGN AND IMPLEMENTATION

{
”author_bot”: false,
”author_date”: ”2020-12-02T13:16:53”,
”author_date_hour”: 13,
”author_date_weekday”: 3,
”author_name”: ”Miguel Ángel Fernández”,
”author_org_name”: ”Bitergia”,
”author_user_name”: ”mafesan”,
”author_uuid”: ”226b402c4ab1a8a114ff9bd804f4e250c0aa05db”,
”commit_date”: ”2020-12-03T11:38:49”,
”commit_date_hour”: 11,
”commit_date_weekday”: 4,
”files”: 2,
”github_repo”: ”chaoss/grimoirelab-sortinghat”,
”grimoire_creation_date”: ”2020-12-02T13:16:53+01:00”,
”hash”: ”66c3b165b37fb1ecd34da1c00b7237311b4d2e31”,
”hash_short”: ”66c3b1”,
”lines_added”: 372,
”lines_changed”: 374,
”lines_removed”: 2,
”message”: ”[schema] Support filtering individuals by last updated date\n\nThe
accepted formats are controlled by regular expressions\nmatching two patterns:\n* A
comparison operator (>, >=, <, <=) and a date\n(e.g. `>=YYYY-MM-DDTHH:MM:SSZ`).\n* A
range operator (..) between two dates\n(e.g.
`YYYY-MM-DDTHH:MM:SSZ..YYYY-MM-DDTHH:MM:SSZ`)\n\nThe accepted date format is ISO
8601, YYYY-MM-DDTHH:MM:SSZ,\nalso accepting microseconds and time zone
offset\n(YYYY-MM-DDTHH:MM:SS.ms+HH:HH).\n\nSigned-off-by: Miguel Ángel Fernández
<*****@*****>”,

↪→

↪→

↪→

↪→

↪→

↪→

↪→

”origin”: ”https://github.com/chaoss/grimoirelab-sortinghat”,
”project”: ”GrimoireLab”,
”repo_name”: ”https://github.com/chaoss/grimoirelab-sortinghat”,
”time_to_commit_hours”: 1.63,
”title”: ”[schema] Support filtering individuals by last updated date”,
”tz”: 1,
”url_id”:
”chaoss/grimoirelab-sortinghat/commit/66c3b165b37fb1ecd34da1c00b7237311b4d2e31”,↪→

”utc_commit”: ”2020-12-03T10:38:49”,
}

Listing 3.1: Example of the JSON file per commit produced by GrimoireLab (only the main
fields are included).

3.3.2 Building the Contributors dataset
Once having the commit data for all the contributors, the next step is building the main
dataset for this project. As the Revelio tool is meant to be integrated with SortingHat, the
decision was to use the unique individuals as entry values for the classification model,
which will predict whether a given contributor is a bot or not.

Our Users-Commits dataset, extracted from GrimoireLab data stored in ElasticSearch, is
composed by single commits per author, and our new dataset needs to have one entry per
contributor. Thus, we need to represent the information from the history of commits for
each author in some way.

3.3. DATA EXTRACTION 29

Figure 3.6: Graphic example of howdata extracted fromElasticSearch look like: one file per
author is produced, which contains a set of fields for all of its commits submitted within
the time period for the analysis.

Following the metrics defined using the GQM approach, data are processed with a list of
variables per contributor, as follows:

• The unique identifier of the author from SortingHat, used as the index field.

• The name of the author from SortingHat.

• The classification of the author as a bot or not, from SortingHat.

• The number of unique commits.

• The number of merge commits, which are the ones modifying no files.

• The number of commits submitted duringweekends (either on Saturday or Sunday).

• The number of commits that have been signed off.

• The unique number of repositories an author contributed to.

Apart from these variables, another set is defined from statistical calculations:

• The ratio of merge commits, over the total number of commits.

• The ratio of commits submitted during weekends, over the total number of commits.

• The ratio of merge commits over the total number of commits.

• The ratio of signed commits over the total number of commits.

• The median and the interquartile range for:

30 CHAPTER 3. DESIGN AND IMPLEMENTATION

– the number of modified files per commit.

– the number of added lines per commit.

– the number of removed lines per commit.

– the length of the commit message.

– the number of words (including stop-words)8 of the commit messages.

The output is a “Contributors” dataset, with one row per contributor, including the sum-
marised information from its contributions in the period of time of the analysis.

3.4 Data processing
With the “Contributors” dataset composed, the next phase consists of exploring the data
exhaustively, so it can be consumed by the different classification models we are testing for
our problem.

3.4.1 Exploratory Data Analysis
For this last set of statistical calculations, a given amount of commits per author is required.
In order to avoid considering data from pet projects and casual users (for example, some
contributors only submit a small number of contributions as part of a learning course), an
additional criterion is to ignore those authors having less than 10 commits for the selected
time period.

After applying this first rule, the starting point is a dataset composed of 3, 747 rows, one
for each contributor.

Looking at the statistical distribution of the variable we aim to classify, author_bot in Fig-
ure 3.7, it can be concluded that this is a highly unbalanced dataset: from these 3, 747 con-
tributors, only 30 are marked as bots. This must be taken into account when creating the
training, test, and validation datasets, and it also implies additional data processing in or-
der to mitigate the effects of such an imbalance on the different classification models.

The remaining variables also have very uneven statistical distributions, except for the gen-
erated variables (median and interquartile range) for the length of the commit messages.
This situation entails these variables should be transformed in order to approximate their
distributions to a normalised version of themselves.

Furthermore, another issue to ponder is how these variables were generated as a summary
of the activity of each contributor, which is independent, no relative information fromother
contributors is used to build them. Nonetheless, some of the numerical variables are not

8Words are counted as groups of characters split by white-space characters within a commit message.
Stop-words are preserved, as they could be relevant when analysing patterns.

3.4. DATA PROCESSING 31

Figure 3.7: Proportion of contributorsmarked as a bot (False, on the left; True on the Right).

completely independent, as they were created to represent extra layers of information in-
ferred from some of the other values, such as the variables counting the number of commits
submitted during weekends, which is a subset of the information provided by the variable
counting the total number of commits; or those whose value is a relative value computed
as a ratio.

3.4.2 Building the training, test, and validation datasets

The main dataset needs to be split into subsets for the classification stage: one for training
(60% of the samples), one for testing (25% of the samples), and another one for validation
(15% of the samples), as it is represented in Figure 3.8.

These subsets need to be statistically similar, so the sample needs to be stratified in order
to keep the human/bot proportion. The method train_test_split from Scikit-Learn’s
model_selectionmodulewas used to obtain these subsets, by using the option stratify.

3.4.3 Generation and selection of features

In this subsection, it is explained how the variables from the Users-Commits dataset have
been transformed and selected for serving as the input for the classification models.

32 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.8: How the initial dataset was split (stratified) into Training, Test, and Validation
sets, showing the percentage each of them represents out of the whole set.

Detection and processing of missing data

The data are provided by the GrimoireLab tool set, and the dataset is a collection of infor-
mation from Git commits. The fields and the information per commit are expected to be
standard.

As we are building in a later step a custom dataset summarising information per author,
we are not having missing data except for author-related information, such as the author’s
name, username, or email (at least one of these three variables has to have a non-empty
value).

Transformation of quantitative variables

The main variables from the dataset are generated in subsection 3.3.2, and most of them
are quantitative variables, as they are representing a summary of the information obtained
from the set of commits submitted by each unique author.

The first examination during the Exploratory Data Analysis phase (3.4.1) shows that most
of these quantitative variables have remarkably uneven statistical distributions. There are
huge differences in the ranges of values, and also these values are widespread. Under this
situation, the approximation to take was to apply mathematical functions helping to scale
these values. Although several transformationswere tested,most of the variables have been
transformed using a customised logarithmic function (see Section A.1) or the squared root
function. The Table 3.2 summarises how the variables were transformed.

Transformation of qualitative variables

Althoughmost of the variables from this dataset are quantitative, the statistical distribution
of some of them points to a need to generate qualitative, binary variables which derive
from them. Looking at the graphical representations9, the referenced variables counting

9These graphs are available in the “Exploratory Data Analysis” Notebook, in the project’s code repository.

3.4. DATA PROCESSING 33

the number of commits under a given condition usually have some bias: observing the
statistical distribution, the general rule is finding a peak at 0 and then the rest of results are
very spread over the histogram.

Following this reasoning, these variables were transformed into binary variables, with the
intention of translating the major difference between these values in a conceptual way: For
instance, looking at the number of merge commits, instead of counting how many of them
there are, it could be enough to know just if a given author submitted merge commits or
not.

On the other hand, I composed a list of heuristic terms (see Table 3.3) belonging to the
application domain, using the terminology of tasks that bots are usually performing dur-
ing the software development process. The first approach was to create a set of dummy
variables with one column per term, where the value is 1 (True) when the term from that
column is included in the author’s name; and 0 (False) if it is not included. For instance, a
user named ghmerger would have a 1 value in the ‘merge‘ and ‘merger‘ columns, and a 1

value in the rest of the columns.

Nonetheless, this approach was adding too much complexity to the system. After several
experiments from Chapter 4, the decision was to summarise the inclusion of these terms
into a “terms score”. The idea was to classify the heuristic terms in three different levels
assigning weights to each of them, according to their relevance in the application domain.
Doing so, an author name having one or more terms from the list would have a greater
value, also taking into account their relevance by using these levels. Having a score of 0
means the author_name field doesn’t include any of the relevant terms. The formula to
compute this terms score is available at Section A.6, and the definition of these three levels
is available at Table 3.4.

As a final note, our target variable author_bot is also a categorical, binary variable, as it
is a property given by the GrimoireLab platform (the variable es 1 when a given author is
marked as an automatic account in SortingHat, and 0 otherwise).

3.4.4 Correlation
To study the correlation between the variables in the dataset, in Figure 3.9 it is represented
a correlation matrix with absolute values, taking into account the dataset with the trans-
formed variables.

By representing the correlationmatrix it was revealed there was a set of variables with high
correlation values. The decision was to establish a hard threshold on correlation values
greater than 0.75. In Figure 3.10, it is shown the pairs of variables which have correlation
values above the threshold. After studying the relevance given the application domain;
and also having into account that there were some variables that seemed redundant (the
values from both the interquartile range and the median had a high correlation in most
cases), the following variables were removed from the transformed dataset:

• git__sqrt_ratio_merge_commits

34 CHAPTER 3. DESIGN AND IMPLEMENTATION

• git__sqrt_ratio_weekend_commits

• git__sqrt_ratio_signed_commits

• git__log_iqr_lines_added

• git__log_iqr_lines_removed

• git__log_iqr_len_commit_message

• git__log_median_len_words_commit_message

After these changes, the correlation values from the resulting dataset are detailed in Fig-
ure 3.11.

3.4.5 Imbalanced data

We already commented in the Exploratory Data Analysis Section (3.4.1) on the fact that
one of the main challenges of this project is the imbalance in the target class we are aiming
to detect. This context was taken into account when splitting the main dataset into the
training, test, and validation tests, but it needs another processing stage before they feed
the different classification models. Looking at the techniques that are commonly used to
reduce the effect of imbalanced data, the one selected was SMOTE [2].

SMOTE consists of an algorithm generating new samples considering the k-nearest neigh-
bours from each original sample from the training set. Each newly generated sample is
interpolated between the original sample and one of the nearest neighbours; with a ran-
dom component λ, which takes value in the range [0, 1].

To apply SMOTE, we rely on the implementation under the over_sampling module from
the Python library imblearn (2.2.4).

3.5 Classification model

The next step in the tool is running the classification model that allows to classify the con-
tributors. The type of variables we have can be separated into two groups: those variables
coming from the activity of each contributor and those variables we have generated from
the contributors’ names based on a set of heuristic terms.

The initial idea was to split the corresponding variables from these two groups into differ-
ent subsets of the data, and each of the subsets would be evaluated by different classifica-
tion models. Then, the output of both models can be directed to an ensemble model that
would produce a final output.

3.5. CLASSIFICATION MODEL 35

Figure 3.9: Correlation heat map of the initial variables from the training dataset.

36 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.10: Correlation heat map showing the pairs of variables with an absolute correla-
tion greater than 0.75 .

3.5. CLASSIFICATION MODEL 37

Figure 3.11: Correlation heat map of the transformed variables from the training dataset.

38 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.12: Effect of applying SMOTE over the training dataset on the target variable;
before (left) and after (right).

3.5. CLASSIFICATION MODEL 39

3.5.1 Models definition
In this subsection, the classification models considered for this project are explained in
more depth 10. The decision was to select a set of models based on the ones used in the
reference scientific papers described in Chapter 2. The tests and results from applying
these classification models to our dataset are presented in Section 4.2.

Naive-Bayes

Naive-Bayes supervised-learning algorithms are based on Bayes’ theorem. They belong
to the Probability-based learning family, and their approach is to use estimations of likeli-
hoods to determine the most likely predictions that should be made and review them later,
based on the available data and also extra evidence whenever it becomes available.

Naive-Bayes classifiers are especially useful for problems with many input variables, cate-
gorical input variableswith a vast number of possible values, and text classification. Among
the advantages of using these classification models are their simplicity to apply (generally,
no parameters to be adjusted) and their resistance to over-fitting.

The selected classifier was the Gaussian Naive-Bayes algorithm implemented in Scikit-
learn (GaussianNB11, under naive_bayesmodule). Mathematically, the definition for this
classification model can be expressed as follows:

Being pk(x) the posterior probability of an observation x to belong to the class k, which
is defined as pk(x) = Pr(Y = k|X = x), in terms of π1, ..., πk and f1(x), ..., fk(x), where
π1, ..., πk are the prior probabilities and f1(x), ..., fk(x) are the p-dimensional density func-
tions for an observation in the k-th class for k = 1, ..., K; the Naive-Bayes classifier makes
a single assumption for estimating f1(x), ..., fk(x) functions: Within the k-th class, the p-
predictors are independent.

With this assumption, we can obtain an expression for the posterior probability,

Pr(Y = k|X = x) =
πk × fk1(x1)× fk2(x2)× ...× fkp(xp)∑K

l=1 πl × fl1(x1)× fl2(x2)× ...× flp(xp)
, (3.1)

for k = 1, ...K.

Thus, to estimate the one-dimensional density function fkj using training data x1j, ...xnj, if
Xj is quantitative we can assume that, Xj|Y = k ∼ N(µjk, σ

2
jk). In other words, we assume

that within each class, the jth predictor is drawn for a normal distribution.

Support Vector Classifier

The support vector classifier is based on the possibility of constructing a hyperplane that
separates the hyperplane training observations perfectly according to their class labels.

10The mathematical definitions are extracted from the book “An Introduction to Statistical Learning” [7]
11https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html

https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html

40 CHAPTER 3. DESIGN AND IMPLEMENTATION

Once this hyperplane exists, the ideal scenario is that a test observation is assigned to a
class depending on which side of the hyperplane it is located.

Nonetheless, observations that belong to two classes are not necessarily separable by a hy-
perplane. In fact, even if a separating hyperplane does exist, then there are instances in which
a classifier based on a separating hyperplane might not be desirable, as it will necessarily
perfectly classify all of the training observations. This can lead to sensitivity to individual
observations and implies that it may have overfitted the training data.

That is, it could be worthwhile to misclassify a few training observations in order to do a
better job discriminating the remaining observations. The support vector classifier, some-
times called a soft margin classifier, does exactly this. Rather than seeking the largest pos-
sible margin so that every observation is not only on the correct side of the hyperplane but
also on the correct side of the margin, we instead allow some observations to be on the
incorrect side of the margin, or even the incorrect side of the hyperplane.

Summarising, the support vector classifier classifies a test observation depending onwhich
side of a hyperplane it lies. The hyperplane is chosen to correctly separate most of the
training observations into the two classes, but may misclassify a few observations. Taking
the mathematical definition of a p-dimensional hyperplane,

β0 + β1X1 + β2X2 + ...+ βpXp = 0 , (3.2)

the separating hyperplane is the solution to this optimisation problem:

maximize M(β0, β1, ..., βp, ϵ0, ...ϵn,M) , (3.3)

subject to

p∑
j=1

β2
j = 1 , (3.4)

yi(β0 + β1xi1 + β2xi2 + ...+ βpxip) ⩾ M(1− ϵi) , (3.5)

ϵi ⩾ 0,

n∑
i=1

ϵi ⩽ C , (3.6)

where C is a non-negative tuning parameter.

K-Nearest Neighbours

K-Nearest Neighbours is a similarity-based classificationmodel whosemain idea is to com-
pute the classification from a simplemajority vote of the nearest neighbours of each point: a
query point is assigned the data classwhich has themost representativeswithin the nearest
k (integer number) neighbours of the point.

3.5. CLASSIFICATION MODEL 41

Note that this algorithm uses the whole training dataset for making the predictions, and
aside from other classification models, there are no specific assumptions that should be
made concerning the data. One of the main setbacks is the fact that this algorithm is af-
fected by noise, which implies this parameter k needs to be selected carefully, particularly
when working with imbalanced datasets.

This model can be found as KNeighboursClassifier12 in Scikit-learn, under neighbours
module).

Mathematically, this classifier can be defined as follows: Given a positive integer K and a
test observation x0, theKNNclassifier first identifies the neighboursKpoints in the training
data that are closest to x0, represented by N0. It then estimates the conditional probability
for class j as the fraction of points in N0 whose response values equal j:

Pr(Y = j|X = x0) =
1

K

∑
i∈N0

I(yi = j) . (3.7)

Finally, KNN classifies the test observation x0 to the class with the largest probability from
equation 3.7.

Decision Tree / Random Forests

As explained in Scikit-learndocumentation13, theDecisionTrees (DTs) are a non-parametric
supervised learning method used for classification and regression. The goal is to create a
model that predicts the value of a target variable by learning simple decision rules inferred
from the data features. A tree can be seen as a set of if-else decision rules.

Providing a more academic definition, a classification tree predicts that each observation
belongs to the most commonly occurring class of training observations in the region to
which it belongs.

In interpreting the results of a classification tree, we are often interested not only in the
class prediction corresponding to a particular terminal node region, but also in the class
proportions among the training observations that fall into that region.

We use recursive binary splitting to grow a classification tree. Since we plan to assign an
observation in a given region to themost commonly occurring class of training observations
in that region, the classification error rate is simply the fraction of the training observations
in that region that do not belong to the most common class:

E = 1−max
k

(p̂mk) . (3.8)
12https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.

KNeighborsClassifier.html
13https://scikit-learn.org/stable/modules/tree.html

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/tree.html

42 CHAPTER 3. DESIGN AND IMPLEMENTATION

Here p̂mk represents the proportion of training observations in the m-th region that are
from the k-th class. However, it turns out that classification error is not sufficiently sensitive
for tree-growing, and in practice two other measures are preferable. The Gini index is
defined by

G =

K∑
k=1

p̂mk(1− p̂mk) , (3.9)

ameasure of total variance across theK classes. It is not hard to see that the Gini index takes
on a small value if all of the p̂mk ’s are close to zero or one. For this reason the Gini index
is referred to as a measure of node purity—a small value indicates that a node contains
predominantly observations from a single class.

An alternative to the Gini index is entropy, given by

D = −

K∑
k=1

p̂mk log p̂mk . (3.10)

Since 0 ⩽ p̂mk ⩽ 1, it follows that 0 ⩽ −p̂mk log p̂mk. One can show that the entropy will
take on a value near zero if the p̂mk’s are all near zero or near one. Therefore, like the Gini
index, the entropy will take on a small value if the m-th node is pure. In fact, it turns out
that the Gini index and the entropy are quite similar numerically.

When building a classification tree, either the Gini index or the entropy is typically used
to evaluate the quality of a particular split, since these two approaches are more sensitive
to node purity than the classification error rate. Any of these three approaches might be
used when pruning the tree, but the classification error rate is preferable if the prediction
accuracy of the final pruned tree is the goal.

Some of the main advantages of decision trees algorithm are:

• It is simple to understand and interpret. Trees can be visualised: if a given situation
is observable, the explanation for the condition is easily explained by Boolean logic.

• Requires little data preparation. Other techniques often require data normalisation,
dummy variables need to be created and blank values to be removed.

• Performs well even if its assumptions are somewhat violated by the true model from
which the data were generated.

The most remarkable disadvantages are:

• DTs can create over-complex trees that do not generalise the data well (over-fitting).

• They can be unstable because small variations in the datamight result in a completely
different tree being generated.

3.5. CLASSIFICATION MODEL 43

• Decision-tree learners create biased trees if some classes dominate. In our case, this
effect would be mitigated because we applied SMOTE to balance both classes.

Regarding the two first disadvantages, both can be addressed by using an ensemble model
taking many decision trees. This is where the Random Forest (RF) classifier14 comes into
play: it builds a number of decision trees on bootstrapped training samples. When building
these decision trees, each time a split in a tree is considered, a random sample ofm predic-
tors is chosen as split candidates from the full set of p predictors. The split is allowed to
use only one of those m predictors. A fresh sample of

√
m predictors is taken at each split,

and typically we choose m ≈ p—that is, the number of predictors considered at each split
is approximately equal to the square root of the total number of predictors.

Then, the prediction of the ensemble is computed as the averaged prediction of these in-
dividual classifiers, improving the predictive accuracy and preventing over-fitting. The
implementation of this classifier can be found as RandomForestClassifier (under the
ensemble module) in Scikit-learn.

XGBoost Classifier

The XGBoost Classifier model belongs to the XGBoost library (see subsection 2.2.4). XG-
Boost is an ensemblemodelwhich uses decision trees as base learners. XGBoost uses CART
trees (Classification and Regression trees), with scores on whether an observation belongs
to a class or not. When this process reaches the max depth of the tree, the algorithm con-
verts the scores into categories assigning a threshold value.

3.5.2 Evaluation metrics

We need to use a set of metrics that help us to evaluate the performance of the different
classification models. The main method to compare the results from the different models
is a confusion matrix, which displays the number of elements that have and have not been
identified correctly. The structure of this matrix is exemplified in Table 3.6.

Looking at the possible values we can obtain, it is worth mentioning that not all the mis-
classified cases affect our use case in the same way: having “False” Negatives is worse than
having “False” Positives. This means it is more important to classify as many bot accounts
as possible (and not mistake any of them for a human) rather than classifying a human as
a bot when it is not the case. In the first case, missing a bot account among the plethora of
contributors in a community could mean that potentially this bot account remains hidden
(and hardly going to be identified); while in the latter, this wrong recommendation could
be just ignored.

This situation links directly to the definition of two basic metrics: precision and recall. As

14https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

44 CHAPTER 3. DESIGN AND IMPLEMENTATION

it is defined in Scikit-learn’s documentation page15, an intuitive definition of precision is
the ability of the classifier not to label as positive a sample that is negative, and recall is the
ability of the classifier to find all the positive samples.

Precision is defined mathematically as:

Precision =
tp

tp+ fp
, (3.11)

and recall is defined as:

Recall =
tp

tp+ fn
. (3.12)

Although it is common to use the F1-score as an evaluation metric for classification models,
this score is considering that the recall and the precision are equally important. This is why
the decision was to use a Fβ score with β = 2, to penalise those classification models with
a greater number of “False” Negatives.

15https://scikit-learn.org/stable/modules/model_evaluation.html#
precision-recall-f-measure-metrics

https://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-f-measure-metrics
https://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-f-measure-metrics

3.5. CLASSIFICATION MODEL 45

Field name Field description

author_bot True if the given author is identified as a bot in SortingHat.
author_date Author date (when the original author made the commit).
author_name Author name from SortingHat.
author_uuid Author UUID from SortingHat.
commit_date_weekday Day of the week when the committer made the commit.
commit_name Committer name.
files Number of files touched by this commit.
grimoire_creation_date Commit date (when the original author made the commit).
hash Commit hash.
lines_added Number of lines added by this commit.
lines_removed Number of lines removed by this commit.
message Commit message as a single String.
time_to_commit_hours Time in hours from author date to commit date.
repo_name Repository the commit was submitted to.
utc_commit Commit date in UTC.

Table 3.1: Selected fields from the git index produced by GrimoireLab.

46 CHAPTER 3. DESIGN AND IMPLEMENTATION

Transformation Feature

Log10(x) git__num_commits
git__num_repos

√
x git__ratio_merge_commits

git__ratio_weekend_commits
git__ratio_signed_commits

Log10(1+ x) git__num_merge_commits
git__num_weekend_commits
git__num_signed_commits
git__median_files
git__iqr_files
git__median_lines_added
git__iqr_lines_added
git__median_lines_removed
git__iqr_lines_removed
git__median_len_commit_message
git__iqr_len_commit_message
git__median_len_words_commit_message
git__iqr_len_words_commit_message

Table 3.2: Transformation applied to quantitative variables.

Common terms

auto, bot, build, cd, ci, code, commit, copy,
dependency, fix, integration, issue, merge, patrol, pr,

pull, release, request, review, sync, template, tool, and travis.

Table 3.3: Common terms used for the name, email, and/or username of automatic ac-
counts.

3.5. CLASSIFICATION MODEL 47

Level Weight Heuristic terms

1 60 bot, dependency, fix, integration and merge

2 30 auto, build, commit, copy, issue, release, request,
review, sync, template, tool and travis

3 10 cd, ci, code, patrol, pr, and pull

Table 3.4: Levels of heuristic terms and their assigned weights used for computing a term
score.

Transformed feature Meaning

git__has_merge_commits 1 if a given author has submitted at least one
merge commit; 0 otherwise.

git__has_weekend_commits 1 if a given author has submitted at least one
commit during Saturday or Sunday; 0 otherwise.

git__has_signed_commits 1 if a given author has submitted at least one
signed commit; 0 otherwise.

terms_score Integer value representing a score obtained from the
author’s name, computed as detailed in Section A.6.

Table 3.5: Transformation of qualitative variables.

Predicted

Human Bot

Real Human True Negative (TN) False Positive (FP)

Bot False Negative (FN) True Positive (TP)

Table 3.6: Example of confusion matrix to evaluate the classifiers’ performance.

48 CHAPTER 3. DESIGN AND IMPLEMENTATION

Chapter 4

Experiments and validation

In this chapter, the different experiments that were run over the different phases of the
project are explained. Although the main experiments are those belonging to the testing
and adjustment of the classification models, there were some efforts during the data pro-
cessing that are worth mentioning.

4.1 Data processing: Analysing text
The following questions were proposed at the Specific objectives Section (1.4.2):

• Q2.2. Can the message content (commit messages, issue texts, etc.) be used to vali-
date this classification?

– Q2.2.1. Does a richer syntax give a hint about the nature of the user?

– Q2.2.2. Can the entropy of a comment give a hint about the nature of the user?

Given that the initial dataset contains the history of commitmessages for each user, the goal
was to obtain a single, summary metric from these commit messages; so we can compare
the results among the different users.

The main hypothesis fromwhere this experiment starts is that it would be expected for bot
users to have less dissimilarity among their commit messages than human users. Thus, in
order to compare these comments from a given user, we decided to use a distance metric:
the Levenshtein distance (A.3). Then, we would obtain distance matrices, so we could
observe some properties, such as if the matrices are dense or sparse with respect to the
average, for instance.

As this distance had to be computed per every single pair of messages, the result was a
series of symmetric matrices, where the value from each position (i, j)was the Levenshtein
distance from the message i to the message j; except from the main diagonal, whose values
were 0 (there is no distance from one message to itself). This computation was largely
costly, as the number of calculations per user is:

49

50 CHAPTER 4. EXPERIMENTS AND VALIDATION

NumCalculations = (NumMessages)2

2
. (4.1)

The decision to reduce the computation time was to limit the number of commit messages
per user up to 1, 500, selected randomly. This decision entails many problems, such as the
temporal dependence of these commit messages. To avoid it, some main solutions were
considered: one was to get the most recent commit messages, given the nature of the data,
and the other one was to get a stratified sample by a given time period (months, years,
etc.).

Aside from these complications, the next problem was to compare all these matrices by
finding one metric capable of summarising the information from the matrix of distances.
After exploring some options and reading some literature, an idea was to compute the
Mahalanobis distance (A.5) between two matrices, taking into account that this distance is
computed between two statistical distributions. Once computed, we would end up with a
new feature characterising the set of values. When trying to compute the Mahalanobis dis-
tance between matrices, we encountered another problem. The algorithm computing this
distance included, among its steps, computing the inversematrix. It turned out some of the
obtained matrices were singular (they had no inverse matrix). This last setback, together
with the rest of the problems we encountered, was increasing too much the complexity of
the experiment, so we decided not to continue further with it.

4.2 Choosing the classification model
In this phase of the experiment process, the goal is to train the classification models we
defined (3.5.1) and test their performance against our dataset. Then, after having the re-
sults using the proposed evaluation metrics (3.5.2) we will choose the best classifier. This
whole process is detailed in Figure 4.1, and it starts with the splitting of our initial dataset
into three sets (Training, Test, and Validation), following the criteria we discussed at sub-
section 3.4.2 and then apply the pre-processing step: the transformation and selection of
features (over the Training and Test datasets) and also applying SMOTE to mitigate the
effect of the imbalance of the classes.

At this point, the decision was to show how the samples from the Training set were dis-
tributed using the t-SNE algorithm, a nonlinear dimensionality reduction technique [12].
This way we could convert our high-dimensional dataset into a two-dimensional one, pre-
serving the distance between the samples in the new dimensional space. In Figures 4.2
and 4.3 we can observe the resized Training dataset before and after applying SMOTE, re-
spectively: In the first image (Figure 4.2), we can observe very few occurrences of positive
bot accounts, and heavily mixed among the rest of the samples from the other class; while
in the second image (Figure 4.3)we can observe amuch clearer distinction between the two
classes, after the synthetic samples generated by SMOTE. Apart from the interesting pat-

4.2. CHOOSING THE CLASSIFICATION MODEL 51

Figure 4.1: Description of the classification process. Background colours for each box ex-
plain which datasets (Training, Test and Validation) are involved in each step.

52 CHAPTER 4. EXPERIMENTS AND VALIDATION

Figure 4.2: Visualising the Training dataset with t-SNE (Blue (0): Human, Red (1): Bot).

tern these samples are forming, we infer that there should be a classificationmodel capable
of separating both classes.

The proposed classifierswere trained and then tested, adjusting the specific hyper-parameters
for each model until finding the best scoring (see subsection 3.5.2) for each of them. Fur-
thermore, we applied PCA1 to discover if there was a combination of features that would
suit as input for the classification model, but we discarded it as the results indicated that
one component accumulated most of the percentage of variance explained.

The results from the tested classifiers are summarised in Table 4.1. The classificationmodel
with the best results was the Random Forest Classifier, with Fβ = 0.811 using the Test
dataset. According to the corresponding confusion matrix (4.3), 6 out of 7 bot accounts
were properly classified, and 826 human accounts out of 829. The Precision-Recall curves
for the Test and Validation sets can be observed in Figures 4.4 and 4.5, respectively. These
results were also tested using a 5-fold cross validation.

The parameters that worked best for the Random Forest Classifier were:

• Number of estimators (Trees in the forest): 300.

• Split criterion: Gini impurity.

• Maximum depth: 4 levels.

1Principal Component Analysis

4.2. CHOOSING THE CLASSIFICATION MODEL 53

Figure 4.3: Visualising the Training dataset with t-SNE after applying SMOTE (Blue (0):
Human, Red (1): Bot).

When trying these results with the Validation dataset, the obtained score was Fβ = 0.6,
obtaining the classification values displayed in Table 4.2 and in the corresponding confu-
sion matrix (4.4), given that there were only 4 occurrences of bot accounts, three of them
were classified correctly and only one was not. Regarding the human accounts, 493 out of
499 accounts were classified accurately.

Looking at feature importance values (see Figure 4.6) obtained from our chosen classifier,
it is clear that the terms score variable we produced was the most relevant for deciding the
classes, followed by the logarithmic transformation of the interquartile range of the number
of words in the commit messages, with a relative importance of 60%. Then, the logarithmic
transformation of the median number of files and the number of commits have a relative
importance of around 20%, while the rest of the variables are barely significant for the
classification.

54 CHAPTER 4. EXPERIMENTS AND VALIDATION

Figure 4.4: Precision-Recall Curve corresponding to the results with the test dataset.

Figure 4.5: Precision-Recall Curve corresponding to the results with the validation dataset.

4.2. CHOOSING THE CLASSIFICATION MODEL 55

Figure 4.6: Feature importance for the Random Forest Classifier, displayed in descending
order.

56 CHAPTER 4. EXPERIMENTS AND VALIDATION

Model name Precision Recall Fβ score

Gaussian Naive-Bayes 0.136 0.857 0.417

Complement Naive-Bayes 0.167 0.857 0.469

LinearSVC 0.143 0.857 0.429

KNN 0.316 0.857 0.638

Decision Tree 0.385 0.714 0.61

Random Forest 0.667 0.857 0.811

XGBoost 0.444 0.571 0.541

Table 4.1: Results of the different classifiers showing themost relevant scores. The coloured
row indicates the model with best overall results over the Test dataset.

Model name Precision Recall Fβ score

Random Forest 0.333 0.75 0.6

Table 4.2: Results of applying the chosen classifier to the Validation dataset.

Predicted

Human Bot

Real Human 826 3

Bot 1 6

Table 4.3: Confusion matrix of the results with the test dataset (Fβ = 0.811). The green-
coloured cells represent the cases where the predicted and the real value match; the red-
coloured ones represent the cases where the predicted values did not match the real ones.

Predicted

Human Bot

Real Human 493 6

Bot 1 3

Table 4.4: Confusion matrix of the results with the validation dataset (Fβ = 0.6). The
green-coloured cells represent the cases where the predicted and the real value match; the
red-coloured ones represent the cases where the predicted values did not match the real
ones.

Chapter 5

Conclusions

In this chapter, we recap the outcomes, achievements, and limitations of this project, after
the objectives described in Section 1.4.

This project has been a long and complicated run. Although the main idea for the project
was clear, the nature of the target problem implied a huge variety of problems and chal-
lenges. Likewise, the project development was affected by a global pandemic, which de-
layed and hinder its completion. Despite having facedmany setbacks and limitations along
the process, it is safe to say we are now able to provide answers to our initial objectives and
also, enlighten the road for future work on this matter. Some of our hypotheses could not
be bested, and some solutions did not work; but on the other hand, we found new research
lines and solutions to explore in the future, gaining very valuable knowledge and experi-
ence along the journey.

5.1 Goal achievements
Regarding Goal 1, we can say we have achieved a well-defined process, including a clas-
sification model that works with the data obtained from the GrimoireLab toolset that al-
lows us to discriminate between human users and bot accounts with reasonable accuracy.
Due to the complexity of this project, the full automation and the integration was decided
to be part of the future work (This links to the response to Q1.4., available in subsec-
tion 5.4.2).

About the questions Q1.1. to Q1.3.: according to the results from the experiments, bot
accounts can be separated from human users primarily by computing a score based on
the terms included in their profile information and also computing a metric about the in-
terquartile range of the number of words in the commit messages for a given individual,
among other less-relevant features. Although the profile information from that individ-
ual is crucial for performing the classification, we can say it is not enough, and we need
more features from the activity. The differences between this activity generated by hu-
mans and bots exist based on our observations, but we were not able to capture them in

57

58 CHAPTER 5. CONCLUSIONS

highly-relevant features for our classificationmodel. Furthermore, we performed an exper-
iment where the features were divided into two different subsets: one subset included the
variables obtained from the activity, and the other the ones from the profile information.
Then, the output from both classifiers was submitted to a voting classifier, but the results
were not promising.

Following withGoal 2, we can provide a partial answer toQ2.1., as we only have obtained
data from Git commits. The outcome could be complemented by analysing other channels
and finding another set of footprints that can lead to better results, also categorised as
future work to improve this project.

To answer Q2.2., we have observed that indeed the message content (such as the commit
messages) is relevant to perform this classification, but more experiments would need to
be run exploring more what we started at the experiment detailed in Section 4.1 to give a
more meaningful answer. Furthermore, to answer Q2.3., we have observed that some of
the activity details helped, such as the median number of files modified in each commit
and the number of commits submitted during weekends, but their relevance was minor
compared to the features detailed in the last section.

Last but not least, considering the Goal 3, we can safely say we have achieved a curated
dataset from a real open-source community, in this case, Git commits from projects belong-
ing to the Wikimedia Foundation (Q3.1., Q3.2.). The curation of the identity information
from the datawe obtainedwas a hard, time-consuming task -even after having bot accounts
identified by the community-, as all the unique identities were reviewed manually to get a
dataset as accurate as possible. This process included cases that included mixed accounts,
as they belonged to a human but also had submitted automated contributions using scripts
or other processes. These cases, among others, would fit more in-depth research and an-
other line of work for our classification tool.

5.2 Knowledge application
Throughout this master’s degree, I have acquired knowledge of important concepts and
tools through various courses and developed the ability to tackle new challenges and apply
my knowledge in different scenarios.

Specifically, these were the most relevant courses for this project:

1. Fundamentos de Análisis de Datos (Fundamentals of Data Analysis): This intro-
ductory course provided me with the context of the cycle of Data Science and the
process behind a complete analysis.

2. Machine Learning I and II: These courses were especially valuable because their
contents focus on classification and prediction models and a variety of techniques
used along the process.

3. ProgramaciónOrientada a Ciencia deDatos (Data Science-oriented Programming):

5.3. LESSONS LEARNED 59

This course gave me the opportunity to gain more experience and knowledge to deal
with the Data Science-related Python modules and tools.

4. Text Mining: In this course, I discovered a new field to explore, with concepts and
techniques necessary for natural language.

5.3 Lessons learned
These are some of the learning outcomes I have reached thanks to this project:

1. Consolidate and amplify the knowledge I obtained during theMaster’s courses, after
applying a real-life use case and facing a variety of problems along the process.

2. Foster my abilities in dealing with the programming side of data exploration and
analysis, including new modules and techniques.

3. A valuable perspective about the research process, with its peaks and valleys, finding
new lines of work and new opportunities, even when the initial results are not good.

5.4 Future work
The complexity of this project increased unexpectedly due to the nature of the problemwe
aimed to solve. This left several questions unanswered, pending work and many research
lines to be explored in order to improve the classification results and applicability of this
tool.

5.4.1 Improving and extending the classifier
Question: Does this classifierworkwith the data from other open-source communities and
other projects using bot accounts?

• Once the classifier is trained for a given open-source project, is the result valid for
other projects from the same community? And what about other communities?

To answer this question, we would need to test the current trained model with a different
dataset. Also, this would help to answer if the obtained results are valid for other software
projects and open-source communities or if there is a structured process that can be fol-
lowed to adjust a set of parameters and improve the classifier’s performance. For instance,
one idea could be to include the heuristic terms in an external configuration file and cat-
egorise them in the three levels that were proposed. This list of terms could be adapted
according to the project’s needs and context.

Question: Are there other footprints that are helpful for this classification?

First, there could be a better way to build the initial dataset from the individual commits
by finding other methods to summarise the information from the contributions of each
individual. We also tried to separate the input features into two different categories: the

60 CHAPTER 5. CONCLUSIONS

ones coming from the activity and the ones coming from the individual’s profile. The idea
was to use separate classificationmodels and choose the best result using aVoting classifier,
but the results were not good.

Some of the strongest lines of future work are:

• Keep studying the commit messages: We could not finish the experiment with the
text distances. This and other related features and processes could help to improve
this classifier.

• To augment this model by using the features from other data sources supported by
GrimoireLab tools, such as GitHub Issues, Pull Requests and Comments.

• Explore “Concept Learning” [6] techniques to build the summarised information
from all the contributions of a given individual and update the dataset incrementally
(the more contributions an individual makes over time, the more information can be
obtained from it).

• Mixed accounts (i.e., humans using automated tools) need to be studiedmore deeply.
The classification would not be binary anymore but multi-class, leading to the possi-
bility of characterising these automatic accounts using a smaller level of granularity.

5.4.2 Integration with SortingHat
This integration with GrimoireLab’s identity management system was part of the initial
design of the tool’s architecture, but we decided to take this part out of the project’s main
scope.

In order to get Revelio working with SortingHat, the trained model would need to be ex-
ported, and the classification results should be turned into a formatted report, including
the identities potentially identified as bots and an accuracy score. This output would be
used for SortingHat’s recommendation engine, which produces a list of recommendations,
in this case, a list of individual profiles that might get labelled as bots: The recommenda-
tions would be returned in “Recommendation-like” objects, referencing the individual, if
it was classified as a bot, and an accuracy value from 0 to 100 (see Listing 5.2). Also, unit
and integration tests must be taken into account.

5.4. FUTURE WORK 61

class BotRecommendation(EntityBase):
individual = ForeignKey(Individual, on_delete=CASCADE)
is_bot = BooleanField(default=False)
accuracy = PositiveIntegerField()

class Meta:
db_table = 'bot_recommendations'
unique_together = ('individual',)

def __str__(self):
return '%s - %s - %s' % (self.individual, self.is_bot, self.accuracy)

Listing 5.2: Proposed class for SortingHat’s recommendation engine to include the results
of the classification.

62 CHAPTER 5. CONCLUSIONS

Appendix A

Definitions

A.1 Shifted logarithm
The decimal logarithm is shifted by 1 to cover variables containing zero values.

sLog10(x) = Log10(1+ x) . (A.1)

A.2 Jaccard distance
The Jaccard distance J(c1, c2) measures the distance between two character sequences c1

and c2 by comparing the number of distinct common words in c1 and c2 with the total
number of distinct words in c1 and c2.

J(c1, c2) = 1−
|words(c1)

⋂
words(c2)|

|words(c1)
⋃
words(c2)|

. (A.2)

A.3 Levenshtein distance
The Levenshtein distance Lev(c1, c2) measures the difference between two character se-
quences c1 and c2 by counting the minimum number of single-character edits (insertion,
deletion, or substitution) required to convert c1 into c2. The normalised version is com-
puted as:

L(c1, c2) =
Lev(c1, c2)

max(|c1| , |c2|)
. (A.3)

63

64 APPENDIX A. DEFINITIONS

A.4 Combination of Jaccard and Levenshtein distances
The combination of the Levenshtein and Jaccard distances from Mehdi et al. article is de-
fined as follows:

D(c1, c2) =
L(c1, c2) + J(c1, c2)

2
, (A.4)

where c1 and c2 are two character sequences.

A.5 Mahalanobis distance
TheMahalanobis distance is a measure of the distance between a point P and a distribution
D [13].

Given aprobability distributionQ onRN, withmean µ⃗ = (µ1, µ2, µ3, . . . , µN)T, andpositive-
definite covariance matrix S, the Mahalanobis distance of a point x⃗ = (x1, x2, x3, . . . , xN)T

from Q is:

dM(⃗x,Q) =
√
(⃗x− µ⃗)TS−1(⃗x− µ⃗) . (A.5)

A.6 Terms score
This terms score takes into account using different weighted heuristic terms, according to
the knowledge domain. The terms are divided into 3 different levels: terms from level 1
have a weight of 60, terms from level 2 have a weight of 30, and terms from level 3 have a
weight of 10.

The score is calculated as:

Ts(term) = 60Nl1 + 30Nl2 + 10Nl3 , (A.6)

where:

• Nln is the number of heuristics from level n included in the term.

References

[1] Victor R. Basili, Gianluigi Caldiera, and Dieter H. Rombach. “The Goal Question
Metric Approach.” In: vol. I. John Wiley & Sons, 1994.

[2] Nitesh V Chawla et al. “SMOTE: synthetic minority over-sampling technique.” In:
Journal of artificial intelligence research 16 (2002), pp. 321–357.

[3] Laura Dabbish et al. “Social Coding in GitHub: Transparency and Collaboration in
an Open Software Repository.” In: Proceedings of the ACM 2012 Conference on
Computer Supported Cooperative Work. CSCW ’12. Seattle, Washington, USA:
Association for Computing Machinery, 2012, pp. 1277–1286. ISBN: 9781450310864.
DOI: 10.1145/2145204.2145396.

[4] Tapajit Dey et al. “Detecting and Characterizing Bots That Commit Code.” In:
Proceedings of the 17th International Conference on Mining Software Repositories. MSR
’20. Seoul, Republic of Korea: Association for Computing Machinery, 2020,
pp. 209–219. ISBN: 9781450375177. DOI: 10.1145/3379597.3387478.

[5] Linda Erlenhov, Francisco Gomes de Oliveira Neto, and Philipp Leitner. “An
Empirical Study of Bots in Software Development: Characteristics and Challenges
from a Practitioner’s Perspective.” In: Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. ESEC/FSE 2020. Virtual Event, USA: Association for
Computing Machinery, 2020, pp. 445–455. ISBN: 9781450370431. DOI:
10.1145/3368089.3409680.

[6] Peter Flach. Machine Learning: The Art and Science of Algorithms that Make Sense of
Data. First. Cambridge, 2012, pp. 104–128.

[7] Trevor Hastie Gareth James Daniela Witten and Robert Tibshirani. An Introduction
to Statistical Learning. Second. Springer, 2021.

[8] Mehdi Golzadeh et al. “A ground-truth dataset and classification model for
detecting bots in GitHub issue and PR comments.” In: Journal of Systems and
Software 175 (2021), p. 110911. ISSN: 0164-1212. DOI:
https://doi.org/10.1016/j.jss.2021.110911.

[9] Hadi Hemmati et al. “The MSR Cookbook: Mining a decade of research.” In: 2013
10th Working Conference on Mining Software Repositories (MSR). 2013, pp. 343–352.
DOI: 10.1109/MSR.2013.6624048.

[10] Philipp Hukal et al. “Bots Coordinating Work in Open Source Software Projects.”
In: Computer 52.9 (2019), pp. 52–60. DOI: 10.1109/MC.2018.2885970.

65

https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1145/3379597.3387478
https://doi.org/10.1145/3368089.3409680
https://doi.org/https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.1109/MSR.2013.6624048
https://doi.org/10.1109/MC.2018.2885970

66 REFERENCES

[11] Yuxing Ma et al. “World of Code: An Infrastructure for Mining the Universe of
Open Source VCS Data.” In: 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). 2019, pp. 143–154. DOI: 10.1109/MSR.2019.00031.

[12] Laurens van der Maaten and Geoffrey Hinton. “Viualizing data using t-SNE.” In:
Journal of Machine Learning Research 9 (Nov. 2008), pp. 2579–2605.

[13] Goeffrey J McLachlan. “Mahalanobis distance.” In: Resonance 4.6 (1999), pp. 20–26.
[14] David Moreno-Lumbreras et al. “SortingHat: Wizardry on Software Project

Members.” In: May 2019. DOI: 10.1109/ICSE-Companion.2019.00036.
[15] Ravishankar Somasundaram. Git: Version control for everyone. Packt Publishing Ltd,

2013.
[16] Ben Straub and Scott Chacon. Pro Git. Second. Apress, 2014.
[17] Guido Van Rossum et al. “Python Programming Language.” In: USENIX Annual

Technical Conference. Vol. 41. 2007, p. 36.

https://doi.org/10.1109/MSR.2019.00031
https://doi.org/10.1109/ICSE-Companion.2019.00036

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Identity problems
	Automatic accounts: bots
	How this project was born
	Project objectives
	General objective
	Specific objectives: Goals and Questions

	Time planning
	Structure of the thesis

	State of the Art
	Research
	A ground-truth dataset and classification model for detecting bots in GitHub issue and PR comments
	Detecting and characterising bots that commit code

	Technologies
	GQM approach
	GrimoireLab
	SortingHat
	Python
	Git

	Design and implementation
	General architecture
	Creating the initial dataset in GrimoireLab
	Selecting the community to analyse
	Setting-up the GrimoireLab instance
	Curating identities information

	Data extraction
	Querying the data from ElasticSearch
	Building the Contributors dataset

	Data processing
	Exploratory Data Analysis
	Building the training, test, and validation datasets
	Generation and selection of features
	Correlation
	Imbalanced data

	Classification model
	Models definition
	Evaluation metrics

	Experiments and validation
	Data processing: Analysing text
	Choosing the classification model

	Conclusions
	Goal achievements
	Knowledge application
	Lessons learned
	Future work
	Improving and extending the classifier
	Integration with SortingHat

	Definitions
	Shifted logarithm
	Jaccard distance
	Levenshtein distance
	Combination of Jaccard and Levenshtein distances
	Mahalanobis distance
	Terms score

	References

